La selección del modelo de simulación del ADN influye significativamente en la comprensión de sus propiedades elásticas

Epresentación de hebras de ADN. / Roldán-Piñero, C.; Luengo-Márquez, J.; Assenza, S.; Pérez, R.
Epresentación de hebras de ADN. / Roldán-Piñero, C.; Luengo-Márquez, J.; Assenza, S.; Pérez, R. - UAM
Publicado: jueves, 11 julio 2024 13:42

MADRID, 11 Jul. (EUROPA PRESS) -

Investigadores de la Universidad Autónoma de Madrid (UAM) han descubierto que, al contrario de lo que se pensaba, la elección del modelo de simulación del ADN influye significativamente en la comprensión de sus propiedades elásticas.

Los investigadores advierten de que las simulaciones por ordenador son una herramienta indispensable para comprender el funcionamiento de moléculas cruciales para los seres vivos, ya que permiten acceder a detalles microscópicos y ofrecen mucha más información que la obtenida en experimentos.

Sin embargo, en un trabajo publicado en la revista 'Journal of Chemical Theory and Computation', señalan que el resultado de una simulación depende del modelo utilizado, es decir, de cómo describimos las interacciones entre los átomos de la molécula.

Para determinar qué modelo se ajusta mejor a la realidad, los investigadores compararon sus resultados con experimentos, específicamente examinando las propiedades elásticas del ADN, que indican el costo de estirar, doblar o retorcer la molécula.

"La elasticidad del ADN es crucial para decidir qué sección del código genético se va a leer, ya que determina cómo se comprime la doble hélice en el interior de la célula. Por lo tanto, es vital saber qué modelos son más adecuados para describir estas propiedades", explican los investigadores.

Aunque los científicos encontraron discrepancias significativas entre los modelos, identificaron un nexo común: al hacer un zoom en la estructura atómica de la doble hélice de ADN, observaron que está "encorvada", es decir, que cada segmento presenta cierta curvatura. De este modo, los investigadores descubrieron que, independientemente del modelo, es posible predecir la elasticidad de la molécula a partir de su curvatura.

"El uso de ordenadores ha revelado una relación entre una propiedad microscópica y la elasticidad del ADN, una característica que afecta a moléculas con tamaños y secuencias muy diferentes, destacando así los elementos comunes en lo aparentemente diverso", detallan los autores.

En las simulaciones se estiraron moléculas de ADN con distintos códigos genéticos, tratando de reproducir las condiciones de laboratorio. Durante las simulaciones, se tomaron ‘fotografías’ de las posiciones de la molécula a lo largo del tiempo. Comparando las ‘películas’ resultantes, los científicos pudieron comprender la respuesta del ADN a esas deformaciones y calcular sus propiedades elásticas.

La realización de simulaciones requiere un profundo conocimiento de las leyes que rigen las interacciones entre los átomos del ADN. Aunque estas leyes son de naturaleza cuántica, realizar simulaciones siguiendo esas normas es una tarea inabordable para los ordenadores actuales.

Por tanto, concluyen los investigadores, "el papel de estos modelos es imitar las consecuencias de esas interacciones cuánticas de forma que las simulaciones sean viables. Esta descripción átomo a átomo sirve también como base para desarrollar modelos menos detallados que permitan simular moléculas más grandes y complejas".